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Abstract
Distribution-free newsvendor models often assume continuous demand distributions to
facilitate analysis and computation. However, in practice, discrete demand is a natural phe-
nomenon. So far, there exists no analytical and computational results in the literature under
this setting. Thus, the goal of this paper is to investigate the newsvendor problemswith partial
information when the demand is discrete and solve them using the so-called discrete moment
problems. Numerical results are presented to illustrate the value of discrete information.

Keywords Discrete moment · Newsvendor problems · Stop-loss · Discrete demand · Shape
information

1 Introduction

The classical newsvendor problem is a fundamental building block of many stochastic inven-
tory control models. Its goal is to help decisionmaking of a retailer who plans to sell a product
facing random (continuous or discrete) demand with a known distribution. Before any sale
periods, the retailer must choose and commit to an order quantity. Then, the actual demand
is observed and satisfied as much as possible with inventory on hand. If stock out occurs,
the retailer is penalized with an underage cost for each unit of unsatisfied demand. On the
other hand, if there are unsold units, the retailer has to pay an overage cost for each unit.
Further, unsold units are salvaged at the end of the sale period. The objective of the retailer is
to select an optimal order quantity to maximize her profit or minimize her cost. If the demand
distribution is known, the optimal order quantity can be computed in closed-form formula
by the critical fractile.

However, in reality, full characterization of demand distributions is almost never avail-
able. Still, the retailer must attempt to make good inventory decisions. Generally, the only
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information available is historical data of demand. One approach is to use approximation and
fit a continuous distribution over the data to compute the respective order quantity. In certain
situations, this approach can become inappropriate since it can either lead to negative demand
or fails to capture asymmetry of the true demand distributions. Another approach utilizes the
limited information (moments, range, unimodality) of demand distributions and makes the
ordering decision accordingly. This class of methods is called the distribution-free newsven-
dor problems in the literature. We refer the readers to Gallego and Moon (1993), Perakis and
Guillaume (2008) and references therein for further details.

A classic solution to a distribution-free newsvendor problem is due to Scarf (1958). Scarf’s
approach aims to maximize the worst-case objective (e.g., expected profit or payoff) over
a parametric family of demand distributions, which brings about its name as the maximin
approach. Scarf was able to derive an analytical formula for the optimal inventory decision. It
is well-known that themaximin approach can result in conservative policies. A less conserva-
tive approach is developed under the name minimax regret, which minimizes the maximum
opportunity cost from not making the optimal decision (see, e.g., Perakis and Guillaume
2008). These models do not include information about the asymmetry of the distribution.
Recent literature attempts to address this issue by inclusion of higher-order moments, such
as skewness, kurtosis, or semivariance to the optimization problems (see, e.g, Natarajan et al.
2018). Some other researchers advocate the use of maximum entropy to approximate the
demand distribution instead (Andersson et al. 2013).

Regardless of modeling choice for ordering decision under uncertainty, the assumption
of continuous demand distributions are often utilized in the robust newsvendor literature.
Consequently, given a fixed ordering decision, the distribution-free newsvendor problem can
be casted as a continuous moment bounding problem whose extremal solutions can be used
to facilitate derivation of optimal policies and analytical insights. Even though a continuous
and differentiable demand distribution can help simplify analysis and facilitate derivation
of closed-form policies, discrete demands are ubiquitous in practical setting. Thus, it is
worthwhile to investigate the deviation of the optimal policies corresponding to discrete and
continuous demand distributions (see, e.g., Swaminathan and Shanthikumar 1999; Axsäter
2013).

The goal of this paper is to investigate and solve distribution-free newsvendor problems
under discrete demand assumption. In this context, we rely on the so-called discrete moment
problems (DMPs) to explore the structure of the optimal solutions. Discrete moment prob-
lems (DMPs) were introduced and studied by Prékopa (1988, 1990a, b, c). In those papers,
the author used linear programming techniques to develop theory and numerical solution
of the optimization problems. The optimization methods are of dual type and are in close
relationship with the dual method of Lemke (1954) for the solution of the general linear pro-
gramming problem. They are stable and fast thanks to the discovery of the structures of dual
feasible bases. These approaches remain state-of-the-art and has seen application in numer-
ous areas including project management, finance, risk management, etc. (see, e.g., Prékopa
et al. 2016).

The outline of the paper is as follows. Section 2 briefly reviews approaches for decision
making under uncertainty in the context of newsvendor problems. Section 3 introduces the
discrete moment problems to find the closed-form bounds for a certain type of objective
function and utilize it to determine the optimal order quantity. Section 4 presents numerical
results and Sect. 5 concludes the paper.
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2 Modeling and preliminary

In this section, we briefly review the discrete moment problems and present the formulations
for the discrete distribution-free newsvendor models from their respective continuous coun-
terparts. In particular, we consider two approaches for decisionmaking under uncertainty: the
maximin approach by Scarf (1958) and minimax regret approach by Perakis and Guillaume
(2008).

2.1 Discrete moment problems

Discrete moment problems (DMP) came to prominence by the discovery that the classical
probability bounds, using some binomial moments, can be found as optimal solutions of
some special linear programs. These results were introduced and extensively studied by
Prékopa (1988, 1990a, b, c). Since then, DMP has beenwidely used inmany application areas
including datamining, biology, finance, engineering, etc. For further information onDMPand
their generalizations, we refer the readers to Prékopa (1992, 1995, 1998, 2001, 2009), Subasi
et al. (2009),Mádi-Nagy andPrékopa (2004),Mádi-Nagy (2008, 2012) andNinh andPrékopa
(2013).

Let X be a discrete random variable, the possible values of which are known to be the
numbers z0 < z1 < · · · < zn and the point probabilities are denoted by

xi = P(X = zi ), i = 0, 1, . . . , n. (1)

Given the knowledge of some power moments μk = E(Xk), k = 1, . . . ,m, where m < n,
the discrete moment (bounding) problem (DMP) provides us with the sharp lower and upper
bounds on E[ f (X)] when the distribution of X is unknown. DMP can be formulated as the
following linear programs

min(max)
n∑

i=0

fi xi

subject to

Ax = b

x ≥ 0, (2)

where

A =

⎛

⎜⎜⎝

1 1 . . . 1
z0 z1 . . . zn

. . .

zm0 zm1 . . . zmn

⎞

⎟⎟⎠ , b =

⎛

⎜⎜⎝

μ0

μ1

. . .

μm

⎞

⎟⎟⎠ , (3)

and fi = f (zi ), i = 0, . . . , n.
Linear programming techniques are often utilized to develop theory and numerical solu-

tion of the optimization problems (2) (see, e.g., Prékopa 1995). However, due to the high
numerical instability of the Vandermonde matrix A, directly solving the primal problem is
not recommended. Hence, the optimization methods of choice are of dual type and are in
close relationship with the dual method of Lemke (1954) for the solution of the general lin-
ear programming problem. They are stable and fast thanks to the discovery of the structures
of dual feasible bases (see, e.g., Prékopa 1995) for some special objective functions. More
importantly, these structures facilitate derivation of closed-form bounds when only a few
moments are available.
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2.2 Distribution-free newsvendor problem

Consider a newsvendor facing a random demand X with support on a discrete set Ω =
{z0, . . . , zn}. If the demand distribution is completely known, then for a given order quantity
q , the expected profit can be computed by Π(q) = pE[min(X , q)] − cq , where c is the
unit ordering cost and p denotes the unit selling price. In this setting, the newsvendor can
compute the optimal ordering quantity to maximize the expected profit using critical fractile.
Specifically, given a profit margin β = c/p, then the optimal order quantity is the smallest
q such that P(X ≤ q) ≥ 1 − β. In what follows, we assume that the full distribution of the
discrete demand is not available, but the newsvendor can estimate the first few moments and
collect some shape information of demand from historical data.

Maximin approach is due to Scarf (1958). The newsvendor makes decision by choosing
the right order quantity to maximize the worst-case profit

min
X∈X pE[min(X , q)] − cq,

where X is a parametric family of demand distributions, obtained with known information.
If the first two moments are available, then the preceding optimization can be written as a
DMP

Π(q) = minX∈X pE[min(X , q)] − cq

s.t

x0 + x1 + · · · + xn = 1

x0z0 + · · · + xnzn = μ1

x0z20 + · · · + xnz2n = μ2

x0, . . . , xn ≥ 0, (4)

where xi = P{X = zi }, i = 0, . . . , n are unknown. The optimal ordering quantity is then
found bymaximizingΠ(q).By direct computation, it can be easily verified that the objective
function in the linear program (4) can be rewritten as Π(q) = μ1 p − cq − pE[(X − q)+].

Minimax regret approach is introduced to mitigate the conservativeness of the maximin
approach (see, e.g., Perakis and Guillaume 2008). Given an ordering decision q and a prob-
ability distribution of demand F , the regret measures the additional profit that could have
been obtained with full information about the distribution, that is, maxz≥0{ΠF (z)}ΠF (y). If
the distribution of the demand is unknown, then the maximum regret, given q , is defined by

ρ(q) = max
F∈X max

z≥0
{ΠF (z)}ΠF (y), (5)

which can be interpreted as the maximum price the newsvendor would pay to know the exact
demand distribution. Thus, the decision criterion consists of minimizing ρ(q).

Following the formulation in Perakis and Guillaume (2008), the optimization problem for
the newsvendor is

min ρ(q) = min
q≥0

max
z≥0

{
max
F∈X E[min(X , z)] − E[min(X , q)]

}
+ β(q − z), (6)
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where β = c/p. The inner problem, consisting of finding the distribution that maximizes the
regret for given q and z, can then be formulated as a DMP:

maxX∈X E[min(X , z) − min(X , q)]
s.t

x0 + x1 + · · · + xn = 1

x0z0 + · · · + xnzn = μ1

x0z20 + · · · + xnz2n = μ2

x0, . . . , xn ≥ 0. (7)

3 Decision-making with discrete moments

Both Scarf’s maximin and the minimax regret approaches to the distribution-free discrete
newsvendor problem requires solving some discrete moment (upper bounding) problemwith
respect to a stop-loss type objective function. In particular, this function is defined as follows
(see Fig. 1)

f (x) =
⎧
⎨

⎩

0 if x < d
x − d if d ≤ x ≤ L
L − d if L < x ≤ n,

(8)

where d ≤ L. Observe that the objective function in the linear program (7) has the above
form, where z and q play the role of d and L , respectively, while the objective function in the
linear program (4) can be considered as a special case with L = n. In the risk and insurance
literature, the function defined by (8) is refered to as a stop-loss function with multiple
retention levels. Note that when L = n, it is reduced to the regular stop-loss function.

Fig. 1 Stop-loss with multiple retention levels
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3.1 Discrete moment bounds

Here, we assume that the first twomoments are given and derive the corresponding structures
of the dual and optimal basis for both minimization and maximization problems. To ensure
feasibility, it can be easily shown thatweneed the assumptions 0 < μ1 < n, μ2

1 < μ2 < nμ1.

To this end, let I be the set of subscripts of those columns of the coefficient matrix A which
form a basis B.

Lemma 1 Every dual feasible basis subscript set to the DMPs with the objective function
defined by (8) has one of the following structures:

Maximization problem

– {0, j, j + 1}, if 2d − 1 ≤ j < L
– {i, j, j + 1}, if 2d − 1 ≤ i + j ≤ 2d, 0 < i ≤ d and j < L
– {i, i + 1, L}, if i ≤ 2d − L
– {i, i + 1, j}, if 2d − 1 ≤ i + j ≤ 2d, i < d and d < j < L
– {0, L, n}
– I ⊂ {L, . . . , n};
Minimization problem

– {d, j, j + 1}, if 2L − 1 ≤ d + j , and L ≤ j < n
– {i, j, j + 1}, if 2L − 1 ≤ i + j ≤ 2L, d < i , and L ≤ j < n
– {i, i + 1, j}, if 2L − 1 ≤ i + j ≤ 2L, d ≤ i , and L ≤ j < n
– {0, d, n}
– I ⊂ {0, . . . , d},

where in all parentheses the numbers are arranged in increasing order. Those bases for which
I ⊂ {0, . . . , d} (I ⊂ {L, . . . , n}) are dual degenerate in the minimization (maximization)
problem. The bases in all other cases are dual non-degenerate.

Proof We shall prove the claim for the maximization problem. For every given structure, the
values for the dual variables yk (k = 0, 1, 2) can be explicitly computed as follows.

– If the dual feasible basis structure is {0, j, j + 1}, then
y0 = 0; y1 = j2 + j − 2d j − d

j2 + j
; y2 = d

j + j2
.

– If the dual feasible basis structure is {0 < i ≤ d, j, j + 1}, then
y0 = i(d − di − j + 2d j − j2)

( j − i) + ( j − i)2
; y1 = −d + i2 + j − 2d j + j2

( j − i) + ( j − i)2

y2 = d − i

( j − i) + ( j − i)2
.

– If the dual feasible basis structure is {i, i + 1, n}, then
y0 = i (i + 1) (n − d)

(i − n) + (i − n)2
; y1 = (d − n) (2i + 1)

(i − n) + (i − n)2
; y2 = n − d

(i − n) + (i − n)2
.

– If the dual feasible basis structure is {i, i + 1, d ≤ j < n}, then
y0 = i (i + 1) ( j − d)

(i − j) + (i − j)2
; y1 = d + 2di − j − 2i j

(i − j) + (i − j)2
; y2 = j − d

(i − j) + (i − j)2
.

Plugging these expressions into the constraints of the respective dual problems, we can easily
derive the stated conditions. Similarly, the dual feasible basis structures can be established
for the minimization problem. ��
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In what follows, we assume the same conditions on the indices used in Lemma 1. In
particular, we ensure that i < d < j < L for maximization problems, and d < i < L < j
for minimization problems.

Lemma 2 The optimal basis to the DMPs with the objective function defined by (8) has the
following structures.

Maximization problem

– If L <

⌊
nμ1 − μ2

n − μ1

⌋
, then the optimal basis is I ⊂ {L, . . . , n}.

– If

⌊
nμ1 − μ2

n − μ1

⌋
≤ L ≤ μ2

μ1
, then the optimal basis is {0, L, n}.

– If L >
μ2

μ1
, we have to consider the below cases.

If

⌊
μ2

μ1

⌋
+ 1 ≥ 2d, then the optimal basis is {0, j, j + 1}, where j =

⌊
μ2

μ1

⌋
.

If

⌊
μ2

μ1

⌋
+ 1 < 2d < L +

⌊
Lμ1 − μ2

L − μ1

⌋
, then the optimal basis is {i, j, j + 1}, where

i +
⌊

μ2 − iμ1

μ1 − i

⌋
≤ 2d ≤ i +

⌊
μ2 − iμ1

μ1 − i

⌋
+ 1 and i ≤ μ1.

If 2d ≥ L +
⌊
Lμ1 − μ2

L − μ1

⌋
, then the optimal basis is {i, i + 1, L}, where i =

⌊
Lμ1 − μ2

L − μ1

⌋
.

Minimization problem

– If d >
μ2

μ1
, then the optimal basis is I ⊂ {0, . . . , d}.

– If

⌊
nμ1 − μ2

n − μ1

⌋
≤ d ≤ μ2

μ1
, then the optimal basis is {0, d, n}.

– If d <

⌊
nμ1 − μ2

n − μ1

⌋
, then we have two cases.

If d +
⌊
dμ1 − μ2

d − μ1

⌋
≥ 2L − 1, then the optimal basis is {d, j, j + 1}, where j =

⌊
dμ1 − μ2

d − μ1

⌋
.

If d +
⌊
dμ1 − μ2

d − μ1

⌋
< 2L − 1, then the optimal basis is {i, j, j + 1}, where

i +
⌊
iμ1 − μ2

i − μ1

⌋
≤ 2L ≤ i +

⌊
iμ1 − μ2

i − μ1

⌋
+ 1 and j =

⌊
iμ1 − μ2

i − μ1

⌋
.

Proof The dual feasible bases structures in Lemma 1, in combination with primal feasibility
conditions, yields the result. ��

Note that when L = n, the dual feasible structures are slightly different. For instance, there
will be no dual degenerate basis for the maximization problem. Lemma 2 is a generalization
to the mean-variance bounds for regular stop-loss function in Courtois and Denuit (2009).
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3.2 Closed-form formula for newsvendor application

The results in the previous section give explicit structures of the optimal basis for the objective
functions used in newsvendor application. In case ofmaximin approach, a closed-form lower
bound on the profit, for a given ordering quantity, can be derived.

Theorem 1 The closed-form lower bounds for the expected profit Π(q), given the first two
moments μ1 and μ2 are presented below.

– If 2q ≤
⌊

μ2

μ1

⌋
+ 1, then Π (q) = pq (μ1 + 2μ1 j − μ2)

j2 + j
− cq, where j =

⌊
μ2
μ1

⌋
.

– If

⌊
μ2

μ1

⌋
+ 1 < 2q < n +

⌊
nμ1 − μ2

n − μ1

⌋
, and h (�x2	) < 2q − 1

– If q2 − 2qμ1 + μ2 − 0.25 ≤ 0, then

Π(q) = μ1 p − cq − p

6

(
3μ1 − 3q − 2qμ1 + μ2 + 2 + q2

)
.

Otherwise,

Π (q) = (p − c) q − p
(
j + j2 − μ1 − 2μ1 j + μ2

)

2 (2 j + 1 − 2q)
,

where j =
⌊
q + √

q2 − 2qμ1 + μ2

⌋
.

– If

⌊
μ2

μ1

⌋
+ 1 < 2q < n +

⌊
nμ1 − μ2

n − μ1

⌋
, and h (�x2	) ≥ 2q − 1

– If q2 − 2qμ1 + μ2 − 0.25 ≤ 0, then

Π(q) = μ1 p − cq − p

6

(
3μ1 − 3q − 2qμ1 + μ2 + 2 + q2

)
.

Otherwise,

Π(q) = μ1 p − cq − p
(
i + i2 + μ2 − μ1 − 2iμ1

)

2(2q − 2i − 1)
,

where i =
⌊
q − √

q2 − 2qμ1 + μ2

⌋
.

– If 2q ≥ n +
⌊
nμ1 − μ2

n − μ1

⌋
, then we have

Π(q) = μ1 p − cq − (n − q)
p

(
i + i2 − μ1 − 2iμ1 + μ2

)

(i − n) + (i − n)2
,

where i =
⌊
nμ1 − μ2

n − μ1

⌋
;

Proof If suffices to show the closed-form upper bound for the expected stop loss E([X−d]+)

given the first two moments μ1, μ2. To this end, we introduce the function h(x), defined as

h(x) = x + μ2 − xμ1

μ1 − x
.
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Note that there are two distinct solutions x1 and x2 to the equation h(x) = 2d. Next, use the
notation σ 2 = μ2 − μ2

1 to compute their values

x1 = d −
√

(d − μ1)
2 + σ 2

x2 = d +
√

(d − μ1)
2 + σ 2.

We claim that if h (�x2	) < 2d − 1, there exists an optimal basis with structure
{0 < i ≤ d, j, j + 1}. Otherwise, we will have an optimal basis with structure
{i, i + 1, d ≤ j < n}.

We know that the best upper bounds can be obtained from solving the maximization
problem.

– Case 1: As we know, if 2d ≤
⌊

μ2
μ1

⌋
+1, the optimal basis is {0, j, j + 1} and j =

⌊
μ2
μ1

⌋
.

E[(X − d)+] = E [X ] − E [min (X , d)]

= μ1 − d
(
p j + p j+1

)

= μ1 − d (μ1 + 2μ1 j − μ2)

j2 + j
.

– Case 2: If h (�x2	) < 2d − 1, there exists an optimal basis with structure
{0 < i ≤ d, j, j + 1}. So, E[(X − d)+] = E [X ]−E [min (X , d)] = μ1+(d−i)pi−d .
If d stays the same, the objective function only depends on pi . Based on the dual feasi-
bility condition, we consider two cases: {2d − 1 − j, j, j + 1} and {2d − j, j, j + 1}.
Through simple algebra, we find that they have the same objective function value:

E[(X − d)+] = μ1 + j + j2 − μ1 − 2μ1 j + μ2

2(2 j + 1 − 2d)
− d.

Thus, in the optimal value, we can use i + j = 2d .
Since we are trying to minimize the dual objective, we consider

g( j) = j + j2 − μ1 − 2μ1 j + μ2

2 j + 1 − 2d

= 1

2

(
j + 1

2
− 2μ1 + d

)
+ d2 − 2dμ1 + μ2 − 1

4

2 j + 1 − 2d
,

whose first derivative according to j is given by

g′ ( j) = 1

2
− 2

(
d2 − 2dμ1 + μ2 − 1

4

)

(2 j + 1 − 2d)2
.

If d2 − 2dμ1 + μ2 − 0.25 ≤ 0, g′ ( j) is non-negative which means g( j) is increasing in
j . Therefore, j = d + 1 and i = d − 1 and the optimal value is

E[(X − d)+] = 1

6

(
3μ1 − 3d − 2dμ1 + μ2 + 2 + d2

)
.

On the other hand, if d2 − 2dμ1 + μ2 − 0.25 > 0, this function is strongly unimodal in
j because

g ( j) = 1

4
(2 j + 1 − 2d) + d2 − 2dμ1 + μ2 − 1

4

2 j + 1 − 2d
− μ1 − d
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and its integer minimizer can indeed be obtained via rounding from its continuous

solution. Let L ( j) = 1

4
(2 j + 1 − 2d) + d2 − 2dμ1 + μ2 − 1

4

2 j + 1 − 2d
. Since L ( j) is a uni-

modal function in j , an exact expression for the optimal j can be obtained by equating
�L ( j) = L ( j + 1) − L( j) to 0, in which case the result is a quadratic equation with
solutions given by

j1 = d − 1 + √
d2 − 2dμ1 + μ2

j2 = d − 1 − √
d2 − 2dμ1 + μ2.

We select j1 since it is closer to jreal =
√
4

(
d2 − 2dμ1 + μ2

) − 1 + 2d − 1

2
. Then

j =
⌊
d − 1 + √

d2 − 2dμ1 + μ2

⌋
+ 1 =

⌊
d + √

d2 − 2dμ1 + μ2

⌋
and i = 2d −

⌊
d + √

d2 − 2dμ1 + μ2

⌋
=

⌈
d − √

d2 − 2dμ1 + μ2

⌉
.

Similarly, for the case of h (�x2	) ≥ 2d −1, we will have an optimal basis with structure
{i, i + 1, d ≤ j < n}. Then, E[(X − d)+] = E [max (X , d)]− E[d] = ( j − d) p j and
the objective function only depends on p j . We also consider two cases: {i, i + 1, 2d − i}
and {i, i + 1, 2d − i − 1} according to the dual feasibility. By substituting j with 2d − i
or 2d − i − 1, we can find that they also have the same objective function:

E[(X − d)+] = i + i2 + μ2 − μ1 − 2iμ1

2(2d − 2i − 1)
.

Thus, in the optimal value, we use i + j = 2d . Then, we can have

g (i) = i + i2 + μ2 − μ1 − 2iμ1

2d − 2i − 1

= 1

4
(2d − 2i − 1) + d2 − 2dμ1 + μ2 − 1

4

2d − 2i − 1
− d + μ1.

So, the first derivative according to i is given by

g′ (i) = −1

2
+ 2

(
d2 − 2dμ1 + μ2 − 1

4

)

(2d − 2i − 1)2
.

If d2 − 2dμ1 + μ2 − 0.25 ≤ 0, g′ (i) is negative which means g (i) is decreasing in i .
Therefore, i = d − 2 and j = d + 2 and the optimal value is

E[(X − d)+] = 1

6

(
3μ1 − 3d − 2dμ1 + μ2 + 2 + d2

)
.

On the other hand, if d2 − 2dμ1 + μ2 − 0.25 > 0, let L (i) = 1
4 (2d − 2i − 1) +

d2 − 2dμ1 + μ2 − 1
4

2d − 2i − 1
and it is a unimodal function in i , so an exact expression for the

optimal i can be obtained by equating �L (i) = L (i + 1) − L(i) to 0 and we can get

i1 = d − 1 + √
d2 − 2dμ1 + μ2

i2 = d − 1 − √
d2 − 2dμ1 + μ2.
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We select i2 since it is closer to ireal =
2d − 1 −

√
4

(
d2 − 2dμ1 + μ2

) − 1

2
. Then

i =
⌊
d − 1 − √

d2 − 2dμ1 + μ2

⌋
+ 1 =

⌊
d − √

d2 − 2dμ1 + μ2

⌋
and j = 2d −

⌊
d − √

d2 − 2dμ1 + μ2

⌋
=

⌈
d + √

d2 − 2dμ1 + μ2

⌉
.

– Case 3: If 2d ≥ n +
⌊
nμ1−μ2
n−μ1

⌋
, the optimal basis is {i, i + 1, n} and i =

⌊
nμ1 − μ2

n − μ1

⌋
.

E[(X − d)+] = E[X ] − E [min (X , d)] = (n − d) pn

= (n − d)
i + i2 − μ1 − 2iμ1 + μ2

(i − n) + (i − n)2
.

It is straight-forward to derive the lower bounds, which is equivalent to solving the mini-
mization problem.

– Case 1: If d ≤ μ2

μ1
≤ n, the optimal basis is {0, d, n}.

E[(X − d)+] = E[X ] − E [min (X , d)]

= μ1 − d (1 − p0)

= μ2 − μ1d

n
.

– Case 2: If

⌊
dμ1 − μ2

d − μ1

⌋
≥ d + 1, d ≤ μ1, the optimal basis is {d, j, j + 1} and j =

⌊
dμ1 − μ2

d − μ1

⌋
.

E[(X − d)+] = E[X ] − E [min (X , d)]

= μ1 − d.

– Case 3: If

⌊
dμ1 − μ2

d − μ1

⌋
≤ d − 2, d ≥ μ1, the optimal basis is {i, i + 1, d} and i =

⌊
dμ1 − μ2

d − μ1

⌋
.

E[(X − d)+] = E [max (X , d)] − E [d] = 0.

��

4 Numerical experiment

To gain insights into the optimal ordering decisions, we compare the solution of the discrete
newsvendor problem to that of the continuous counterpart using the maximin approach. Let
δ > 0 be the finite increment between successive values in the support of the demand.

In our simulation study, we use the beta-binomial demand distribution with parameters
n = 20, a = 0.2, b = 0.25 and the mixed binomial distribution with parameters n1 =
10, n2 = 50, p1 = 0.1, p2 = 0.9, v1 = v2 = 0.5. For instance, δ = 1 means that the
support of the demand distribution is {0, 1, . . . , n}, while δ = 5 suggests that the support set
is {0, 5, . . . , 5n}. This demand patterns can be observed for bundles of products for example.
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Table 1 Comparison between the continuous solutions and the discrete solutions using maximin approach,
when the demand follows a Beta-binomial distribution (n = 20, a = 0.2, b = 0.25)

Continuous formulation Discrete formulation
β δ q Profit q Profit

[0.01, 0.1] 1 27.61 7.55 20.00 7.80

5 137.32 37.70 100.00 38.92

10 274.75 75.43 200.00 77.87

15 408.54 112.95 300.00 116.58

[0.1, 0.9] 1 6.49 1.47 8.09 1.53

5 37.02 8.80 45.48 9.15

10 67.38 14.83 84.11 15.41

15 101.60 23.65 126.10 24.69

[0.9, 0.99] 1 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00

Table 2 Comparison between the continuous solutions and the discrete solutions using maximin approach,
when the demand follows a mixed binomial distribution (n1 = 10, n2 = 50, p1 = 0.1, p2 = 0.9, v1 = v2 =
0.5)

Continuous formulation Discrete formulation
β δ q Profit q Profit

[0.01, 0.1] 1 72.39 19.49 50.00 20.28

5 357.79 97.26 250.00 101.15

10 724.77 194.89 500.00 202.67

15 1086.98 292.28 750.00 303.93

[0.1, 0.9] 1 17.85 4.11 23.02 4.30

5 84.05 18.52 107.24 19.36

10 174.40 38.56 222.94 40.38

15 254.02 55.58 328.44 58.18

[0.9, 0.99] 1 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00

Finally, we randomly choose 3000 values for the profitmargin in the following three intervals:
[0.01, 0.1], [0.1, 0.9] and [0.9, 0.99]. The average order quantities and respective profits,
computed via the maximin approach, are reported in Tables 1, 2.

From the numerical results, we observe that the discrete newsvendor formulation yields a
more profitable solution, compared to that from the continuous counterpart. The average profit
improvement is about 3% for the Beta-binomial demand and 4% for the mixed binomial case.
Our simulation also shows the conservative property of the maximin approach. In particular,
when profit margins are randomly chosen between 0.9 and 0.99, the order quantities are
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always equal to zero. By using the assumption of discrete demand, the new formulation does
improve on the order quantities for a wide range of profit margin.

For robustness, we conducted similar experiments for other common discrete distribu-
tions (e.g., Discrete uniform, Geometric, Beta-Pascal and Gamma-Poisson distributions)
and analyze their respective outputs. If the underlying demand distribution has a single
mode, or if it behaves similarly to the normal distribution, the proposed discrete formula-
tion only achieves a minor improvement compared to using the continuous one (i.e., less
than 1%). Overall, the performance of our approach significantly improves with multi-modal
demand distributions (see Tables 1, 2). Specifically, the best profit improvement of 10%
occurs when the two modes are furthest away from each other in the mixed binomial demand
model.

5 Discussion

In this paper, we formulate and solve the distribution-free newsvendor problem under the
assumption that the random demand is discrete. Our solution approach is based on the theory
of discrete moment problems. In particular, Lemma 1 provides a characterization for the
dual feasible basis structure for both the maximization and minimization bounding problems
on a general stop-loss function. Thus, the reported results can also be of great interest for
insurance and risk management applications. In what follows, we discuss several future
research directions.

First, the discussion in Sect. 4 poses an immediate question of how to leverage shape
information into the decision-making process. Linear shape constraints (e.g., unimodality
constraints) in discrete moment problems have been well studied in the literature. We refer
the readers to Prékopa et al. (2008), Subasi et al. (2009), Kumaran and Swarnalatha (2017),
and Swarnalatha and Kumaran (2017). The common approach is to introduce an additional
set of linear constraints and solves its relaxation using Prékopa’s dual algorithm. However, so
far, there exists no closed-form bounds on the stop-loss objective functions with unimodality
constraints.

In addition, it may be worthwhile to study the impact of nonlinear shape constraints in
DMPs. For instance, if the underlying random demand is known to be logconcave, i.e., its
probability mass function satisfies the relation

x2i ≥ xi−1xi+1, i = 1, . . . , n − 1, (9)

which is a tighter condition than unimodality because logconcavity implies unimodality
(see, e.g., Ninh and Pham 2018). Note that the non-convexity of (9) can pose a challenge
for optimization. Thus, in the DMPs literature, unimodality constraints have been frequently
used as a proxy instead (see, Subasi et al. 2009). Developing algorithms to solve DMP with
logconcave constraint is a new area of research.

Lastly, one can also include the following log-convex constraints into a standard DMP

x2i ≤ xi−1xi+1, i = 1, . . . , n − 1. (10)

Though less popular than its log-concave counterpart, log-convexity is important in many
application areas (Prékopa 1995). In insurance, compound distributions are frequently used
to model losses (see, e.g., Ninh and Prékopa 2015) and there is a wide class of log-convex
compound distributions. Note that the log-convexity constraints defined in (10) forms a
convex set, and hence, the resulting mathematical program is a convex optimization problem
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and can be efficiently solved. In particular, these constraints can be rewritten into second-
order cone constraints as follows

min(max)
n∑

i=0

fi xi

subject to
n∑

i=0

zki xi = μk k = 0, . . . ,m,

∥∥∥∥

(
2xi

xi−1 − xi+1

)∥∥∥∥ ≤ xi−1 + xi+1, i = 1, . . . , n − 1,

xi ≥ 0 i = 0, . . . , n, (11)

and we can utilize primal–dual interior point methods to solve problems (11) to optimality
(see, e.g., Alizadeh and Goldfarb 2003).

Acknowledgements The authors would like to thank the referees for the constructive comments and discus-
sions that led to this improved version of the paper.
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